org.lsmp.djep.groupJep.groups
Class Quartonians

java.lang.Object
  extended byorg.lsmp.djep.groupJep.groups.Group
      extended byorg.lsmp.djep.groupJep.groups.Quartonians
All Implemented Interfaces:
AbelianGroupI, GroupI, RingI

public class Quartonians
extends Group
implements RingI

Possibly the quatonians, compleatly untested.

Author:
Rich Morris Created on 16-May-2004

Nested Class Summary
static class Quartonians.Quartonian
           
 
Constructor Summary
Quartonians()
           
 
Method Summary
 java.lang.Number add(java.lang.Number a, java.lang.Number b)
          Get sum of the numbers
 void addStandardConstants(JEP j)
          adds the standard constants for this group
 boolean equals(java.lang.Number a, java.lang.Number b)
          whether two numbers are equal
 java.lang.Number getInverse(java.lang.Number num)
          Get Inverse of a number
 java.lang.Number getONE()
          Get multiplicative identity i.e. 1.
 java.lang.Number getZERO()
          Returns the identity element under +
 java.lang.Number mul(java.lang.Number a, java.lang.Number b)
          Returns the product of two numbers, a*b
 java.lang.Number sub(java.lang.Number a, java.lang.Number b)
          Get the difference of the numbers.
 java.lang.String toString()
           
 java.lang.Number valueOf(java.lang.String s)
          returns number given by the string
 
Methods inherited from class org.lsmp.djep.groupJep.groups.Group
addStandardFunctions, getNumberFactory
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface org.lsmp.djep.groupJep.GroupI
addStandardFunctions, getNumberFactory
 

Constructor Detail

Quartonians

public Quartonians()
Method Detail

getZERO

public java.lang.Number getZERO()
Description copied from interface: GroupI
Returns the identity element under +

Specified by:
getZERO in interface GroupI

getONE

public java.lang.Number getONE()
Description copied from interface: RingI
Get multiplicative identity i.e. 1. Strictly speaking a ring need not have a mul indentity. However most useful ones do, and they are not all integral domains.

Specified by:
getONE in interface RingI

getInverse

public java.lang.Number getInverse(java.lang.Number num)
Description copied from interface: GroupI
Get Inverse of a number

Specified by:
getInverse in interface GroupI

add

public java.lang.Number add(java.lang.Number a,
                            java.lang.Number b)
Description copied from interface: GroupI
Get sum of the numbers

Specified by:
add in interface GroupI

sub

public java.lang.Number sub(java.lang.Number a,
                            java.lang.Number b)
Description copied from interface: GroupI
Get the difference of the numbers. i.e. a + (-b)

Specified by:
sub in interface GroupI

mul

public java.lang.Number mul(java.lang.Number a,
                            java.lang.Number b)
Description copied from interface: RingI
Returns the product of two numbers, a*b

Specified by:
mul in interface RingI

equals

public boolean equals(java.lang.Number a,
                      java.lang.Number b)
Description copied from interface: GroupI
whether two numbers are equal

Specified by:
equals in interface GroupI

valueOf

public java.lang.Number valueOf(java.lang.String s)
Description copied from interface: GroupI
returns number given by the string

Specified by:
valueOf in interface GroupI

addStandardConstants

public void addStandardConstants(JEP j)
Description copied from interface: GroupI
adds the standard constants for this group

Specified by:
addStandardConstants in interface GroupI
Overrides:
addStandardConstants in class Group

toString

public java.lang.String toString()
Overrides:
toString in class Group


http://www.singularsys.com/jep Copyright © 2004 Singular Systems